Chapter 5

Assessing Structural wmawuza_ of Graphs*
Timothy E. Goldsmith and Daniel M, Davenport

In this chapzer, we discuss some measures of the similarity of two graphs, Our work
was initially motivated by a nced to measure the similarity between Pathfinder networks
(Schvaneveld:, Durso, & Dearholt, 1985), The probiem of how 1o compare two different
representations, however, axists more generally in the fields of sceling and modeling. A
central assumption of our wotk is that representations have structural properties and com-
patisons of these representations ought to reflect these structural properties. The aim of
this current work, then, is to identify a method of assessing graph similarity chat is sensi-
tive to structural information,

We begin by describing a particular view of smucture and similarity and its implicarions
for compating graphs. Next, we identify two basic properties of graphs, paths and neigh-
borhoods, and show how each of these properties can be used as a basis for defining graph
similarity. We then describe several related measires for assessing graph similarity, dis-
cuss some of their properties, and report results of an initial cotmparison of the measures,
Finally, we offer some generalizations and extensions of the measures.

Similarity and Structure

The basic problem we wish to address is how to measure the similarity of two graphs,
More specifically, we would like o define a function that maps any two graphs onto a real
sumber that reflects the graphs’ sirmilarity, The set of such functions is very large because
similarity itself is not well-defined. Graph similarity is somewhat akin 1o making human
judgments of similarity, Such Jjudgments are inherently subjective becaise perceived simi-
larity may depend on a multitude of factors including those characteristics of the cbjects that
are psychologically salient to the perceiver and the beliefs the perceiver has about the pur-
pose of the fudgment. Similar concerns arise in defining measures of graph similarity,

Consider, for example, the graphs in Figure 1. Graph A isa simple binary tree with
seven nodes, and graphs B and € are deviations of A; B differs from A in three edges,
whereas C differs in just one edge. Which graph, B or €, is more similar to A? There is,
of course, no absolutely right answer, and in fact, we will show shortly thas either 8 or ¢
can bse viewed as more similar to A.

Notice in Figure 1 that we have arranged the nodes of graphs B and C ir the same spa-
tial layoui a5 in A, We assume that the gtaphs we compare are always composed of a
common set of labeled nodes, and so switching node Iabels to assess similarity is disal-
lowed. This assumption is realistic for those applications of graph theory where the nodes
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of a graph comrespond to some specific set of objects under study and therefore transposing intmitively represent graph structures, could be used 10 define an index of similarity by
nodes would be meaningless, Howevet, we do assume that the edges of the graphs are : counting the common substructures of two graphs, Q:Ew_u.ﬂ_ 1987 nomo:_.uow an approach
unlabeled. This assumption is aiso reasonable for many applications of graph theory. (We of Ulam’s using g technique based on this idea for measuring graph stmilarity. Ulam's
discuss at the end of the chapter the case of labeled edges.} By graph similarity, then, we method is to partition the edges of two graphs into Palrwise isomorphic subgraphs; the
mean the similarity of the patterns of edges that define how two graphs with common node smaller the humber of subgraphs needed to decompose the original graphs, the mOre simi-
sets are linked. We take as axiomatic that it is the structure of these edge patterns that we lar the graphs. Two graphs with the seme number of edges, no matter how dissimilar, can
wish to measure. ) . always be partitioned into sets of identical subgraphs by letting each subgraph be a single

edge. However, graphs that are more structurally siilar will decompose into fewer tdent-
cal subgraphs, with the extreme case _ua_...w graphs that are mmoEo%E.n_ for which re parti-

Graph Properties and Similarity

First, we begin with a few basic definjtions of graphs and their properties. We limit
our discussion to undirected graphs, without loops, and with a common sct of labeled
nodes, An edge relation is a binary relation defined on pairs of nodes and is the most
primitive relation of a graph, Al higher-order graph properties are derived from the edge
relation, Omne such property is a path. The distance between two nodes, v and v, is the
minimumn path length for all paths between v and v* provided such a path exists, Because g
path is a relation defined on the edge relation, it is a higher-onder relation, A graph can be
completely described by either its edge relations (i.e., adjacency matrix) or its path lengths
(i.e., distance matrix). In.the case of undirected graphs, without loops, each of these ma-
Enangcoaaagsmgoo?&mmswomoaw&o triangular cell entries, and so 2
graph with 2 nodes may be represented by a vector of Aﬁvb distances,

A second highet-order graph property is & neighborhood, A neighborhood about some

R are (2,3}, {2, 4, 5), and {2} respectively. By excluding v from the set, which diverges
.awmmgmwﬁ iww_meﬂﬁz Mmuaoaaﬂng be viewed is 45 a collootion of subobjects of an object from the normal definition of a neighborhood, we can simplify our definitions of graph
than higher-order relations on an bject. n this sense structure is viewed as an entity similarity, Notice that a neighborhood is also a relation on the edge relation, and thus a
_Tather than higher. T felations on an object. Sl : higher-order relation. So, both path length and neighborhood content are, by our defini-
(specifically, a collection of subobjects). Although this distinction in the rm may seeim . : .

subtle, we believe it is itmportant for defining strocrral similarity, If smuctuce is viewed gs Rer, U
an entity, then structural similarity of oam.um should be assessable by identifying the MM_”MM& Such that ﬂ&uﬂmﬂa&hﬂﬁ% nnma._c_wm_.ﬁmﬁ._.uh of them. Next we show how both
objects” structural subobjects, On the other hand, if stracture is viewed 85 & property, a . mmM u”avaﬁww :ﬁ. _.wo maﬁ_o%;u .mnw.~. laion costficient of the
‘measure of strucnal similarity should compare the objects’ structural properties, rwm_ﬁw.ﬁ Piis may be comp Ew computing the correlation ¢ A _nsaw ¢ the
Consider first structure as an cntity. To define graph similarity under this view, we an_h_wma»%n § E,Na:no sun_uw.%. >cm“ﬁa ma“aowoowmm_g. assesses zmw: 8 nﬂsnw voou oM vari-
might begin by identifying specific subentities to serve as the basis for comparing graphs. wvmmq .H.MHMMM» om_mwnﬁ m_,._ ah._an owﬂﬂwm& n_nﬂ.mu nw wBEnMwh_Eo sm g.nm _Umn v,.“uo HM. .,._.Ew-
Subgraphs, such as cycles, stars, and cliques, which are already well-defincd and L arming uies a S SEems intuitively
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appealing for measuring similarity, and in fact comparisons of Pathfinder networks with
this approach have proved meaningful (e.g., Schvaneveldt, Durso, Qoldsmith, Breen,
Cooke, Tucker, & DeMaio, 1985). :

Turning next to.neighborhoods, two graphs may be compated by assessing the similar-
ity of their neighborhoods for corresponding nodes. As with the correlation coefficient, we
would Eke to measure the degree of shared elements relative to some otal pool of elements.
This may be accomplished with sets by examining their intersection and union. More
specifically, an index of similarity for a common node in two graphs is the cardinality of
the intersection of the node neighborhoods divided by the cardinality of the wnion of the
neighborhoods. One measure of overall graph similarity is the mean of these # values.
This measure will vary from zero to one with higher values indicating greater similarity,

We now have two ways of defining graph similarity, one comparing path distances
with a comrelation coefficient and the other assessing neighborhood regions with simple set
operations. The next logical question is whether these two measures actually differ in their
assessments of graph similarity. Consider again the graphs in Figure | and the question of
which graph, B or C, is more similar to A. We now have a tnesns for answering this
question, and the answer is that B is closer 1o A in terms of path lengths, but € is closer to
A in terms of neighborhoods. The correlation of path lengths between A and B i5 .79 and
between A and C is .42, whereas the neighborhood similarities between 4 and B is .43 and
between 4 and € is .74. So we come 10 exactly opposite conclusions about the graph’s
relative similarity with these two measures. Although there are undoubtedly cases where
both approaches would agree, we believe that, in general, path lengths and neighborhoods
offer qualitatively different ways of assessing structurat similarity of graphs, In the follow-
ing section, we describe some closely related similarity measures and their properties. (A
more formal treatment of these definitions and their properties is given in Appendix A.)
Following this we describe the results of a study comparing these various measures,

Definitions and Properties of Graph Similarity Measures

In this section we describe a class of related greph similarity measures, Let C4A, B)
be the similarity between graphs A and B with a common labeled node set as measured by
Cyfori=11to 8. The first four measures are based on neighborhoods and the second four
are based on path Iengths. The measures C, and Cg are simply the neighborhood and path
length measures, respectively, described above.

?ooﬁ.ﬂgﬁngnﬁu.ﬁoﬁigﬁnpﬁﬁgﬁoﬁowg similarity of
neighborhoods. In each case, the cardinality of the intersection of the neighborhoads is
divided by some number which normalizes the index. C; and Cj differ from C1 only in
their normalizations, Cy is the number of cdges that match between A and B divided by the
number of possible matches (i.e., the number of node pairs). Itis also one minus the mean
absohute difference between entries in the adjacency vectors of A and B,

Cs is the mean of the ratios of smallest to largest values for corresponding entries in the
two graphs’ distance vectors. Cg is one minus the mean sbsoluts difference between en.
tries in the graphs' distance vectors normalized by the sum of these distances. Finally, Cy
is the correlation coefficient of the graphs’ adjacency vectors. The interested reader may re-
fer to Appendix A for formal definitions.

We next evaluate the above measures with Tespect to several desirable properties for 2
graph similarity measure, First, the measure should be independent of the size of the node
set or the density of the graph. Some of the Ci's appear to meet this criterion better than
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others, a point that comes up later. € through Cg are normalized over the range [0, 1]
where 0 is least similar and 1 is most similar. C7 and Cg ate normalized over the range
{-1, 1] where -1 is least similar and 1 is most similar. Bach imeasure takes on its maximum
value for identical graphs. € through C4 will take on their minimurm value when compar-
ing complementary graphs, Finally, algorithms computing the various C;’s are easily
coded in standard computer languages which run in 0(22) 10 0(23) time in the number of
nodes.

Comparison of the Measures

We next compare and contrast the varions measures by applying them to a commeon set
of graphs. Consider again the graphs in Figure 1. The similarities between each pair of
graphs are given in Table 1 for all sight measures, Realize thet the various measures are
not directly comparable (except Cy and Cg) because each one occars on a unique scale.
Even € through €3, which employ similer set-theoretic definitions, are scated differently
because of different normalizations. Therefore, only relative differences of their vatues ars
meaningful,

Table 1. The similarity between each pair of graphs 4, B,
€, in Figure 1 as measured by €y through €'y and rank
orders in parentheses from most (1) to least (3) simlar.

Similarity

Measure (A, B) C(A, C) C(B, C)
C 043 (2) 074 (1) 039 (3
o 050 () 083 (1) 048 (3)
C; 050 (3) 087 (1) 052 ()
Cy 071 25 081 (1) 071 2.5
Cs 079 () 0718 () 071 (3)
Ce 087 (1) 085() 081 (3)
c; 030 (25) 077 (1) 030 (2.5
Cs 079 (1) 042 () 045 2)

Notice, first that Cy through C4 and Cy all agree that geaphs A and € are most similar,
whereas Cs, Cg, and Cg show that A and B are most simitar, However, the rank orders of
similarity are not identical for these five measures. Notice also that Cs and Cg show an
identical pattern of ranks but Cyg has a different pattern. Hence, with thase simple graphs
thers appear to be important similarities and differences in what the measures are assessing,

We wirn next to a similar analysis of more complex graphs. The graphs are Pathfinder
solutions to relatedness ratings of 30 course-relevant concepts given by 20 students and
one instructor. For each of the 21 datascts, four classes of graphs varying in graph density
were derived. Each graph was then compared with every other graph (210 comparisons) in
its class using afl eight measures, Graph-theoretic distances weré used by all of the mea-
sures. The resuliing similarity values for each measure were then correlated with every
other measure. 'y through C3 correlated very highly across all of the graphs, as did Cs
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and Cg. For this reason we do not report the results of €5, Cy,and Cg. The resulting cop-
relation matrices for each of the four sets of graphs are shown in Tables 2 through 5,

Notice first, as we also saw in Table 1, that C) correlates highly with C, and this
holds for both sparse and dense graphs. Apparently the. of comparing {set-theoretic
functions or correlation) edge relation information has Little effect on the resulting similarity
indices. C4 comrelates highly with Cy and Cq for sparser graphs, but less so for denser
graphs. Recall that Cg and C; compare cdge relations with mean absolute difference and
correlation, sespectively. We speculate that the normalization of C4 isnot as good as Cy's
or Cy’s, and this weakness becomes especially apparent with denser graphs.

Table 2. Correlations on results of C’s applied to 30 node graphs
{mean graph density = 0.067), :

. Cy Cs Cz c |
C; 0.97 0.59 0.97 .46
Cy 0.62 1.00 0.51
Cs 0.62 0.73
Cy 0.50

‘Table 3. Correlations on results of C’s applied to 30 node graphs
(mean graph density = 0.124).

Cy Cs Coy g
< 093 0.84 0.98 0.73
Cs ¢.81 0.97 0.78
Cs 085 0.84
Cy . 075

Table 4. Correlations on results of C's applied to 30 node graphs
{mean graph density = 0.188),

LGy Cs e, Cs
o] 0.49 0.76 0.96 0.83
Cs 0.17 0.66 - 0.60
Cs 0.67 0.61
Tl 0.88
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Table 5. Correlations on results of C's applied to 30 node graphs
{mean graph density = 0.278).

Cy h.u. Cq Cy

ol 0.66 0.83 0.94 0.86
o 0.46 0.86 0.79
Cs 0.74 0.69
o S 0.92

Cg correlates most highly with Cs for sparser, but lowest with denser graphs. Also,
Cy's comelations with C) and C; steadily increase with increasing graph deasity. A likely
reason for this is because as graph density increases, the difference berween the adjacency
and distance vectors decreases, untif for completely connected graphs the two are identical,
In summary, although certain of the measuras Bppear quite similar, gverall there are some
important and systematic differences. Addicional analyses employing other types of graphs
and graphs from other applications are needed before mare general conclusions can be
reached, :

The abave analyses simply examined relative agreement of the various measures, Evi-
dence that one measure is actually “better” than another for assessing graph similarisy
would require some axternal index of similarity. As reported elsewhere in this volume
(Goldsmith & Johnson, Chapter 17), there is evidence that the similarity between a sto-
dent’s PENET of course concepts and the instructor's PENET predicts final course grades
better for similarity measured by C) than by C3. This finding was interpreted as support
for the idea that 2 neighborhood comparison of graphs is more sensitive to configural (i.e.,
swuctural} information, and it is this type of information that is important in knowledge
structures.

Generalizations and Extensions of the Measures

In this section, we briefly describe some generalizations and extensions of the neigh-
borhood measures. First, there may be occasions when we want to compare two unlabeled
graphs. For example, we might want to find a best fi of a test graph with some target
graph by permuting the nodes of the test graph. Brute force methods are useless here due
to the explosive growth of the number of permutations as node size increases, Further, the
problem does not seem to lend itself to a linear programming approach. Instead, we could
employ a particular C; as an optimizarion function in a simulated annealing process
{Kirkpatrick, Gelatt, & Vecchi, 1983). Here, we wonld atternpt to find thas permutation of
nodes for the test graph giving a minimum valve for ¢ when compared to the target graph,
When the two graphs are not isomorphic, the annealing technique yields a best fit as de-
fined by the particular C being used. Initial results hased on a visual comparisen of the tar-
get graph with permuted test graph are promising,

Finally, with some simple modifications we may extend the definitions of € to work
for edge- and node-weighted graphs, as well as edge- and node~colored graphs, This will
allow C to compare, for example, two chemical molecules by Tepresenting each with a
node-colored, edge-weighted graph, whose nodes represent individual atoms and whose
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edge weights represent bond valence, or perhaps, bond energy. Interest in assessing simi-
larity of melecular siractures has recently led chemists 1o define graph measures of similar-
ity. For example, Herndon (1988) has developed a technique for computing & quantitative
index of similarity between molecular graphs that requires first translating each graph into a
string of symbols and then employing string comparison methods to determine the original
graphs’ structural similarity, Tn Appendix B we describe in more detil some modifications
of a neighborhood measure of C that may be useful in comparing graph représentations of
molecules, :

Conclusions

We began by assuming that a measure of graph similarity should assess structural in-
formation. We attempted 1o argue that structure is best viewed as a property of graphs
Tather tham as an entity, We then defined stracnural property as a higher-order relation and
identified two distinct types of structaral propertics in graphs: paths and neighborhoods,
Several related measures of graph similarity employing either path lengths or neighbor-
hoods were defined and some of their properties noted. An initial analysis of these mea-
sures indicated that use of path lengths and neighborhoods 1o determine similarity assess
different characteristics of geaphs.

What lies behind these differences? Path distances describe how far awiy nodes are lo-
cated; neighborhoods describe which nodes are linked. Path distances employ node pairs
as the unit of comparison; neighborhoods use nodes. The path distance approach first con-
verts the information contained in & peth fo a real number (the path length) and then com-
pares corresponding path lengths between graphs; the neighborhood approach first corn-
pares correspornding neighborhoods with set-theoretic measures and then converts this re-
sult 10 a real number. Whether one approach is better than the other of course ultimately
depends on its functional utility within a particular application. If the phenomena being
represented by graphs is inherently described by distance information, then path distances
will likely be better, However, if what is being represented is move accurately reflected by
associations within neighborhoods, then the neighborhood approach should prove better,
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Appendix A

Formal Definitions and Properties of Some Graph Similarity Measures _

We identify a class of similarity functions for comparing graphs as €. We denote a
particular function from € as C and vse subscripts to distinguish different measurss, A
graph G = (V, E) is a finfte set V of nodes and a set E of edges where E is a subset of
VxV (Carre, 1979). We say two graphs GV}, E;) and G3(V3 Ej) have a common
node set if V1 = V3. Given two undirected and labeled graphs A and B with common
node set V, C(A, B} is the similarity between A and B as measared by C. We define a
neighborhood as a region about a particular node in a graph. Let 8a(v,v'} be the graph
distance between nodes v and v, Define agfv,v') to be 1if 8gfvv’) =1 and 0 other-
wise. We denote by G, the set of nodes v' such that G (v.¥') = 1. This set is the
neighborhood about v, .

We define the following similarity measures. In cases where the denominator of a
sumrnand is zero, we employ the convention tha if both neighborhoods for an element are
ctopty then the summand for that element is one, bat if onlly one of the neighborhoods is
enipty, then the summand for that element is zero.

la, ~ 2,1

1
€14 B) =5 A4, ua
¥ v

vel

2 l4,~ 3,
A AP TV ERTN
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3 1 1
9?5“ w.M“?i.._ _3_:3_

veV

" Notice that if we write C3 a5

111 _}‘.DWL 1 _.&ca.w.t_
CyA. By = 315 A ta B,

veV ve ¥

we se¢ that it is the average of two other similarity measures, These other measures are in-
teresting in their own right and are reminiscent of conditional probebilities. In assessing
similarity berween A and B in one case, the measure is sensitive to those edges in A omitted
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by B, and in the other case it is sensitive to edges in B not found in A. As the average of
the two, C; captures both cases. There may be applications where one would want to use
only one of the individual measures. For example, if we assurne that graph A represents a
prototype of some sort, then it may be meaningful to assess the similarity of an gxemplar
(8) to the prototype (4). We would expect a different result when the similarity of A 10 B
is computed.

Next, we define, for two nonnegative real numbers aand&,aBbtobe epcifa=5,
afbifa<b, and blaif b<a. Also,letA@ B bethe symmetric difference between sets
Aand B. Then, C4 is defined as follows:

Cy(A, B) = ~|MWW _nx?_i - n.w?._...:

1 , .
. M.Rh?:ev 8 agz(v,v)
vy

1
mfNM—\mﬂQ Wc
wV

Interestingly, Cy4 is also one minus the average of the symmetric differences of the neigh-

bothoods. This may be seen by noting that

M ey(vy)rog(v,y) = _\._:. N m.__
vy
and

_Qa?.cg - nm?éi = o) + aglvy) - 2oy (v,v} « oglv,v))
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We now define two other measures Cg and Cg which are based on path Iengths. Notice
that Cs is similar to Cy except that the function 8 is applied to actual graph distances for Cs,
but to edge relations for Cs.

H 13 »
Csa.B) = %L_Wﬁ?; ) 8 85(v,v")

Celd, By = 1 -2 Y18 - 8p(v.v)]
64, B) = T 1n Ld B, (v) + 8p(v,v)
——

For similarity measures C through C we may derive distance measures, I, by letting

" D=1-C. Some of the measures have interesting forms as distances.

4 la,@ 8|
LR revry
¥ v
vev
1 l4, @ 8|
YTy Ty
veV

biam) =% |4, e8]
vev

Also, from the definitions of € we may discover several interesting properties. Since
[ 1B,

I+ 13, 3 (14,1 + 18,0)sla, v B, <n1

weget C12Cy S C35,Cy<Cy, and Cs5Cg In general, C, is incomparable to ' and

. €a. Similar refations hold for the distance measures as well. Also, it is possible (but te-

dious) to show that the distance indicas for all of the similarity measures, except Cy, are
meics on the space of subsets of V x V .

We can think of graphs with common node set V as subsets of Vi V. Ag such; the set
of all such graphs is a Boolean ring whose multiplicative identity, £, is the completely con-
nected graph and whose zero is the empty graph. In this ring, multiplication is given by
intersection and addition is given by symmetric difference. If we choose D for a metric on
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this space, we may define a norm (which we call the C; notm) on a graph G by
IGH = 1-Dy(G, 1} = C(G, I). With this definition, the foliowing properties hold for all
graphs A, B, and C over node set V: :

lavall+llanzlellallelall
| { PNTIPRT
Naealisitall+Nz il

Ha o Blls! A I

s @ 8ll+lla @ clisliz e cl]

where A is the complement of A with respect to I. This last inequality allows us & define a
metric D(A4, B) = |l4 @ BII, which turns out surprisingly tobe D,
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Appendix B A
An Extension of Neighborhood Similgrity Measures .

The weight of an edge (v,") in graph G will be denoted by wg(v,v') and its colar by
xg(vi¥'). The weight of a node v in G will be denoted wg(v) and its color by Xg(v). Next
we define 4 Kronecker delts function on the set of colors in a graph by 8{c,e’) =1, if c is
the same color as ¢’ and is 0 otherwise. All of our measures then take the form

$ M A—Q\.mtv 8 S._w?uv AWARLT.&. H_w?__vvv-
veV

JMSM A.f?_i 8 xﬁ?;bv Am@f?kg. um?_qdv
v

v

where v| and v, are :QBEEam functions. For example

_.“.__. M m?m?u.am?d_“_h _,w 3 _ M Asm?..‘& 0 Em?ivu*
v vl vyt

veV

is & measurs of similarity berwsen two node-colored, edge-weighted graphs. Notice that
this measure reduces to € for graphs that are not colored or weighted. With careful nor-
malization, a sember of potentially useful mezsures are definable, .




